

# FB2255 Series Instrument 

## PC2255 <br> PC Software Utility Program



# Amendment Record 

## FB2255 <br> Document 51297

## Manufactured by Fairbanks Scales Inc.

## 821 Locust

Kansas City, Missouri 64106
Created
07/2012
Revision 1 01/2013

## Disclaimer

Every effort has been made to provide complete and accurate information in this manual. However, although this manual may include a specifically identified warranty notice for the product, Fairbanks Scales makes no representations or warranties with respect to the contents of this manual, and reserves the right to make changes to this manual without notice when and as improvements are made.

It is the responsibility of the requesting party to develop, maintain, install, and connect networking devices and general network connectivity as it applies to the originating party's network. No warranty or guarantee, expressed or implied, concerning the network, its design, its installation, or operational characteristics has been offered by Fairbanks Scales. Fairbanks Scales shall not be liable for any loss, damage, cost of repairs, incidental or consequential damages of any kind, whether or not based on express or implied warranty, contract, negligence, or strict liability arising in connection with the design, development, installation, or use of an intended network.
The Bluetooth ${ }^{\circledR}$ word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Fairbanks Scales is under license. Other trademarks and trade names are those of their respective owners.

## © Copyright 2012-2013

This document contains proprietary information protected by copyright. All rights are reserved; no part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without prior written permission of the manufacturer.

## Table of Contents

SECTION 1: GENERAL INFORMATION ..... 7
1.1. Model Descriptions ..... 7
1.2. Main Product Features ..... 7
1.3. Specifications ..... 8
1.3.1. Instrument Approvals ..... 8
1.3.2. Basic Specifications ..... 8
1.3.3. Standard Settings ..... 9
1.3.4. Weight Accumulator ..... 9
1.3.5. Outputs ..... 9
1.3.6. PC2255 ..... 9
1.3.7. Power Requirements ..... 9
1.3.8. DC Models ..... 10
1.3.9. Out of Range Warnings ..... 10
1.3.10. External Printers ..... 10
1.3.11. Environment. ..... 10
1.4. Accessories ..... 11
1.5. AC Operation ..... 12
1.6. Powering up the FB2255 ..... 12
SECTION 2: USER OPERATIONS ..... 13
2.1. Front Panel Key Functions ..... 13
2.2. Front Panel Programming Parameters ..... 14
2.2.1. Setting the Time ..... 14
2.2.2. $\quad$ Setting the Date ..... 14
2.2.3. Checking Power Supply / Battery Voltage. ..... 15
2.2.4. Programming the Sleep Function ..... 15
2.3. Operating Procedures ..... 15
2.4. Gross, Tare and Net Weight ..... 16
2.5. Basic Weighing ..... 16
2.6. Gross Weighing ..... 17
2.7. Net Weighing ..... 17
2.8. Gross/Tare/Net Weighing ..... 17
2.9. Weight Accumulation ..... 18
2.10. Number of Accumulations ..... 18
2.11. Clearing the Accumulators ..... 18
2.12. Piece Counting ..... 19
2.13. Piece Count and Total ..... 20
2.14. Peak Weight ..... 21
SECTION 3: SERIAL COMMUNICATION WIRING ..... 22
3.1. JP3 Jumper Configuration) ..... 22
3.2. TB4 Wiring connections, COM1 (A), COM2 (B), and COM2 (C) ..... 23
3.3. TB5 Remote Switch Inputs ..... 23
3.4. Remote Display Active Keys ..... 24
SECTION 4: INPUT / OUTPUT ..... 25
4.1. 3550 Tape Printer ..... 25
4.2. Okidata 186 T Form Printer ..... 25
4.3. Okidata 420 Form Printer ..... 30
4.4. TM-U295 Ticket Printer. ..... 33
4.5. TM-U590 Ticket Printer. ..... 33
4.6. Remote Display ..... 34
4.6.1. Programming the 4-20mA Analog Output mode ..... 35
4.6.2. Programming the 4mA Weight Value. ..... 35
4.6.3. Programming the 20mA Weight Value ..... 35
SECTION 5: FIELDBUS/BLUETOOTH ..... 36
5.1. Fieldbus Installation ..... 36
5.2. Fieldbus Connections ..... 37
5.2.1 Overview of Terms ..... 37
5.2.2. DeviceNet (29578) ..... 39
5.2.3. ControlNet (31979) ..... 41
5.2.4. Profibus (29576) ..... 43
5.2.5. Ethernet / IP Diagnostic LEDs ..... 45
5.3. Bluetooth ${ }^{\circledR}$ Technology Device ..... 46
SECTION 6: PC2255 UTILITY SOFTWARE ..... 49
6.1. Introduction ..... 49
6.2. Communication Settings ..... 49
6.3. Communication Files ..... 51
6.4. Menu Bar ..... 51
6.5. Configuration ..... 53
6.6. Calibration ..... 54
6.7. Fieldbus / 4-20 mA. ..... 54
6.8. Custom Output - Settings ..... 58
6.9. Custom Output - Load ..... 58
6.10. Custom Output - Build ..... 59
6.11. Custom Output - Tokens ..... 60
6.12. Custom Output - Weights ..... 61
6.13. Formatting Tickets ..... 62
6.14. Printed Examples. ..... 63
SECTION 7: SERVICE AND MAINTENANCE ..... 64
7.1. Troubleshooting the Instrument ..... 64
7.2. Battery Installation ..... 64
.
APPENDIX I: DATA OUTPUT FORMATS ..... 65
A. General Notes ..... 65
B. Fairbanks/ Toledo Continuous Output. ..... 65
C. Cardinal 738 Continuous Scoreboard Output ..... 68
D. Weightronics WI-120 Continuous Output ..... 68
E. Condec Continuous Output ..... 69
F. Demand Output ..... 69
G. Continuous Output. ..... 70
H. PLC ..... 71
I. UPS ..... 72
J. P Ship ..... 73
APPENDIX II: REMOTE PC COMMANDS ..... 75
APPENDIX III: FB2255 REMOTE DISPLAY WIRING ..... 77
APPENDIX VI: FB2255 REMOTE DISPLAY ACTIVE KEYS ..... 78

## Section 1: General Information

### 1.1. Model Descriptions

The FB2255 is a general purpose weighing instrument that can be used with a wide variety of platforms and load receivers, and is available in eight (8) different configurations.

| MODEL | PART NO. |
| :--- | :---: |
| - FB2255-1 Series ABS, AC Power | 32351 |
| - FB2255 Series ABS, AC/Battery Power with Bracket | 32449 |
| - FB2255-2 Series SS, AC Power | 32352 |
| - FB2255 Series SS, AC/Battery Power with Bracket | $\mathbf{3 2 4 5 0}$ |
| - FB2255 Series SS, AC Power, No Bracket | $\mathbf{3 2 4 5 1}$ |
| - FB2255 Series SS, AC/Battery Power, No Bracket | $\mathbf{3 2 4 5 2}$ |
| - FB2255 Series SS, AC Power, No Bracket, IP69K | $\mathbf{3 2 4 5 3}$ |
| - FB2255-K Series SS, AC Power, IP69K | $\mathbf{3 2 3 5 2}$ |

### 1.2. Main Product Features

Major features of the Instrument include the following.

- Push-button programming and calibration.
- Program data is stored in battery supported ram and backed up in flash memory.
- The battery should be replaced every twelve (12) months.
- The FB2255 series instrument features a large one inch (1") green backlit LCD weight display, which can be tilted up or down to accommodate different lighting conditions.
- Microprocessor controlled design allows the instrument to be rapidly programmed at installation to meet the specific requirements of the application.
- The obtainable accuracy meets Handbook 44 requirements, and the instrument is approved for commercial application up to $\mathbf{1 0 , 0 0 0}$ divisions.
- A maximum of 100,000 displayed divisions can be programmed for noncommercial applications.
- A computer utility software program PC2255 is available, downloaded from Fairbanks Intranet for programming using the computer, and is required for certain features such as custom ticket formatting.


### 1.2. Main Product Features, Continued

- The PC2255 software utility program can also upload and modify the instruments set-up, configuration, and calibration.
- Saved information can be downloaded from a computer to the FB2255 Series in the event of a catastrophic failure.
- The instrument provides two (2) serial communication ports to provide communication to various types of peripheral devices for RS232, RS422, RS485, and 20 mA data outputs.
- Optional accessories include a 4-20 mA Analog Output, a Bluetooth® serial adapter, and three different fieldbus devices; Profibus®, DeviceNet ${ }^{\text {TM }}$, and Ethernet/IP.


### 1.3. Specifications

### 1.3.1. INSTRUMENT APPROVALS

| $\bullet$ CC | $09-023$ |
| :--- | :--- |
| $\bullet$ MC | AM-5720 |
| $\bullet ~ E T L ~$ | ETL Listed |
| $\bullet$ | Conforms to ANSI/UL STD 60950-1 |
| $\bullet$ | Certified to CAN/CSA C22.2 STD NO. 60950-1-03 |

### 1.3.2. BASIC SPECIFICATIONS

| - ENCLOSURE | ABS, Black NEMA 1, Stainless Steel NEMA 4X Desk and Wall Mount |
| :---: | :---: |
| - DISPLAY | 6-digits, One inch (1") LCD, Green Backlight |
| - FRONT PANEL KEYS | On/Off, Units, Zero, B/G, Net, Tare and Print |
| - UNITS | lbs., oz, kg, g and lbs/oz, or custom |
| - GRADUATION SIZE | 0.0001 to 50 |
| - AD CONVERSION | 66 per second |
| - LOAD CELL EXCITATION | 5 Volts DC |
| - SENSITIVITY | $1 \mu \mathrm{v} / \mathrm{d}$ (microvolt/division) |
| - LOAD CELLS | Eight (8) 350 ohm or Sixteen (16) 1000 ohm |
| - DISPLAYED DIVISIONS | 10,000d Commercial and 100,000d Non-Commercial |
| - CAPACITIES | Programmable to 999999 |

### 1.3. Specifications, Continued

### 1.3.3. STANDARD SETTINGS

| $\bullet$ Zero Range | Off, $\mathbf{2} \%$ or $\mathbf{1 0 0 \%}$ |
| :--- | :--- |
| $\bullet$ Auto Zero Tracking | OFF, $\mathbf{0 . 5}, \mathbf{1}$ or $\mathbf{3}$ divisions |
| $\bullet$ Balance | OFF, 0.5, $\mathbf{1}$ or $\mathbf{3}$ divisions |
| $\bullet$ Filter | Slow, Animal, Standard, and Fast |
| $\bullet$ Display Update Rate | $\mathbf{0 . 2 , 0 . 4 ,}$ and 0.8 seconds |

### 1.3.4. WEIGHT ACCUMULATOR

| - Capacity | 999,999 Weight Units <br> $-\quad$ Printed or viewed. |
| :--- | :--- |

### 1.3.5. OUTPUTS

| - PORT 1 | Bidirectional Serial Port. Settings include OFF, RS232, RS422, <br> and RS485. RS232 has 30+ updates a second |
| :--- | :--- |
| - PORT 2 | Port 2 is used to interface to the PC2255 program, <br> OR, <br> Provide 20 mA passive, RS232, RS422,or RS485. |

### 1.3.6. PC2255

- Computer software utility program is available for your local Fairbanks Representative.
- PC2255 is required for setting certain aspects of programming, such as custom Units and custom ticket formatting.


### 1.3.7. POWER REQUIREMENTS

- 117 volts $A C+/-10 \%$
- 220 volts AC +/- $10 \%$
- $\leq 0 / 2$ volts AC between Neutral and Ground
- 1.5 watts maximum
- The FB2255 is designed to operate from 80 to 260 volts AC, 50 to 60 Hertz


### 1.3. Specifications, Continued

### 1.3.8. DC MODELS

| • Batteries | Five (5) Size "D" Alkaline batteries @ 1.5 Volts DC each. |
| :--- | :--- |
| • Battery Life | •Up to forty (40) Hours or greater with a maximum load of 4,350 load <br> cells and backlighting enabled. |
|  | -Battery usage time can be adversely affected by battery storage, <br> battery capacity and battery brand. <br> • To maximize battery life, Serial Ports 1 and 2 should be switched <br> OFF, if not used. |
| • Internal Battery | - Should be replaced every 12 months using Panasonic CR 12203 V or <br> equivalent. |

### 1.3.9. OUT OF RANGE WARNINGS

| - HiCAP | Scale input is over capacity |
| :--- | :--- |
| $\bullet-\cdots---$ | Displayed weight exceeds 6 digits |
| - Sleep Mode | Settings include OFF, 1, 2, 5, 10, 20, and 30 minutes |
| - Time and Date | Battery Maintained |

### 1.3.10. EXTERNAL PRINTERS

- Citizens IDP 3550 Tape Printer
- Okidata 184 \& 186 Serial Form Printer
- Okidata 420 Serial Form Printer
- Epson Models TM-U295 and TM-U590 Ticket Printers


### 1.3.11. ENVIRONMENT

| $\bullet$ Temperature | $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F}\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$ |
| :--- | :--- |
| - Storage Temp. | $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ |

### 1.4. Accessories

Optional accessories include the following.

| FIELDBUS DEVICES |  |  |  |
| :--- | :--- | :--- | :--- |
| $\bullet$ DeviceNet $^{\text {TM }}$ | $\bullet$ ControINet $^{\text {TM }}$ | $\bullet$ Profibus $^{\circledR}$ | $\bullet$ Ethernet/IP |

## 4-20 MA ANALOG CURRENT LOOP OUTPUT

| $\bullet 16$ bit Resolution and Monotonicity | - $0.01 \%$ Non-Linearity |
| :--- | :--- |
| - Isolated 4 mA to 20 mA | - Front Panel Programmable or via PC2255 utility <br> software program |

## BLUETOOTH ${ }^{\text {® }}$ TECHNOLOGY INTERFACE

- Utilizes either Port 1 or Port 2 Serial Output. RS232 serial Interface to Bluetooth Interface. Range 100 meters ( 328 feet).
- The Bluetooth option will operate either as a Client or Server depending on which device the FB2255 is connected.
- If connected to a printer, the FB2255 will be a Server.
- If connected to a PC, the Instrument will be a Client.


## WARNING!

Absolutely no physical, electrical or program modifications other than selection of standard options and accessories can be made by customers to this equipment
Repairs are performed by Fairbanks Scales Service Technicians and Authorized Distributor Personnel ONLY!

Failure to comply with this policy voids all implied and/or written warranties

### 1.5. AC Operation

The FB2255 is designed to operate from $\mathbf{8 0}$ to $\mathbf{2 6 0}$ volts AC, $\mathbf{5 0}$ to $\mathbf{6 0}$ Hertz.

- 117 Volt AC Operation
- FB2255 is factory wired for 117 VAC and requires a three prong grounded outlet.

| FB2255 ABS Power Cord | Connection |  |
| :--- | :--- | :---: |
| Brown/Black | AC (Hot) 117 VAC |  |
| Blue/White | ACC (Neutral) 0 VAC |  |
| Green/Green-Yellow | Ground |  |

- 220 Volt AC Operation

The FB2255 has Auto Switching capability.

- Rewire the power cord according to the following diagram.
- 



### 1.6. Powering up the FB2255

1. Press and hold the ON / OFF Key for one to two $(1-2)$ seconds.

- The Instrument will display "888888", then a "1234567890" character display moving from right to left, followed by the revision of software.
- Upon completing the warm-up, the FB2255 will display the actual weight on the scale.

2. Press and hold the ON / OFF Key for one to two (1-2) seconds to turn off the FB2255.

## Section 2: User Operations

### 2.1. Front Panel Key Functions

| ON/OFF | Turns the Instrument on or off. |
| :--- | :--- |
| UNITS | Switches between pre-programmed selectable weight units. |
| ZERO | Sets the display to zero, programmable: $2 \%$ or $100 \%$ of capacity. |
| B/G - NET | Toggles between Gross and Net weights <br> $\bullet$ <br> This apples only if a Tare Value has been entered greater than ZERO. |
| TARE | Automatically tares off displayed weight when key is pressed. |
| PRINT | Simple RS232 output when key is pressed. |
| $\mathbf{0 - 9}$ | Used for Programming and inputting manual tares. |
| MENU | Gains access to the sub-menus in the Configuration Mode. |
| ARROW <br> KEYS | Used for scrolling through the menu selections. |

Depending on programmed selection, Tare Weight amount will do one of the following.

- Be retained for reuse until changed, or if power is removed.


## OR...

- Automatically clear when Gross Weight returns to ZERO.



### 2.2. Front Panel Programming Parameters

Follow these steps to program the Instrument.

### 2.2.1. SETTING THE TIME

1. Press and hold the PRINT key for three (3) seconds.

- The display momentarily displays Set-ti, then shows the current time in HHMMSS.

2. Press the RIGHT ARROW key will scroll to "12hr A", "SetdA", and then back to Weigh Menu.
3. When the current time setting is displayed, press the MENU key.

- The most significant digit will erase.

4. Key the new time setting with the 0-9 keys.
5. Press ENTER.
6. At the "12hr A" prompt, press the MENU key.
7. Use the ARROW KEYS to toggle through the option noted below.

- 12hr A - 12 hour clock, currently AM.
- 12hr P - 12 hour clock, currently PM.
- 24 hour - Military time (1:00 PM = 1300 hours).

8. Press ENTER to save the setting.

### 2.2.2. $\quad$ SETTING THE DATE

- Set-dA displays, followed by the current date setting.
- Date is entered in the MM-DD-YY format.

1. Press Menu.

- The first two digits will blink.
- The most significant digit will erase.


2. Key the new time setting with the 0-9 keys.
3. Press ENTER.

### 2.2.3. CHECKING POWER SUPPLY / BATTERY VOLTAGE

1. Press the TARE key for three (3) seconds.

- The battery current or power supply voltage displays
- 8.3 VDC nominal.


### 2.2.4. PROGRAMMING THE SLEEP FUNCTION

1. Press and hold the $\mathbf{B G} /$ Net key for three (3) seconds.

- The display will indicate SLEEP, and then display the current setting.
- This function serves to prolong battery life by turning off the Instrument.
- When there is no activity, the Sleep Mode activates according to the programmed time frame.
- Activity is when weight is applied to the scale exceeding the balance setting, pressing a key, and receiving a polling request on a communication port.

2. Press MENU.
3. Use the Arrow Keys to toggle between the available options.

- Selections in minutes include OFF, 1, 2, 5, 10, 20, 30.

4. Press ENTER to save the setting.

### 2.3. Operating Procedures

1. Press and hold the ON / OFF Key for two (2) seconds.

- The Instrument will display "888888", followed by "1234567890" character display moving from right-to-left, then the revision of software.
- Once the warm-up is complete, the FB2255 displays the actual weight on the scale.

2. To turn the FB2255 off, press the ON / OFF key for two (2) seconds.

- The Zero. Tare and the AZT functions require the displayed weight to be stable before these functions will operate.
- The weight reading is stable if the variation in weight is less than the programmed BAL RANGE.


### 2.4. Gross, Tare and Net Weight

There are three terms used when weighing an object's or load's amount.

The NET WEIGHT (product only) is the GROSS WEIGHT (total amount) minus the TARE WEIGHT (container only).

```
NET WEIGHT = Gross Weight - Tare Weight
```



## WORKING EXAMPLE

A full can of house paint is an object to be weighed. The empty can is the TARE weight. The paint is the NET weight. Together they equal the GROSS weight.

### 2.5. Basic Weighing

Follow these steps for Basic Weighing.

1. Empty the platform.
2. Turn the scale $\mathbf{O N}$.
3. Press ZERO.

- When the display indicates " 0 ", it is ready for use.


### 2.6. Gross Weighing

Follow these steps for Gross Weighing.

1. Press the GROSS/NET key, if required, to set display to GR (gross).
2. Press the ZERO key, if required, to set scale to " 0 ".
3. Place container/object on scale (Tare weight).
4. Read the Gross Weight on the display.

### 2.7. Net Weighing

Follow these steps for Net Weighing.

1. Press the GROSS/NET key, if required, to set display to GR (gross).
2. Press the ZERO key, if required, to set scale to " 0 ".
3. Place container/object on scale (Tare weight).
4. Press the TARE key.
5. Place material in container or add objects (Net weight).
6. Read the Net Weight on the display.

### 2.8. Gross/Tare/Net Weighing

1. Press the GROSS/NET key to display GR (Gross).
2. Press the ZERO key, if required, to set scale to " 0 ".
3. Place container/object on scale, noting the weight.
4. Press TARE.
5. Place material in container or add objects.
6. Note the Net Weight on the display.
7. Press the GROSS/NET key to switch to Gross.
8. Read the Gross Weight on the display.

### 2.9. Weight Accumulation

1. Place a weight on the Scale Platform.
2. After the weight is stable, press the B/G NET key until the display alternates between the number of Accumulations " n " and the Accumulated weight.
3. Press the UNITS key to accept the weight, (display will momentarily indicate "ACCEPt", or press the B/G NET key to skip and return to the weigh screen.
4. The scale must return to " 0 " Gross Mode before another accumulation can occur.
5. Repeat steps 1 through 4 for additional accumulations.

### 2.10. Number of Accumulations

1. Press and hold ZERO for three (3) seconds.

- The display will alternate between the Accumulated Piece Count and the Accumulated Weight for thirty (30) seconds, then return to the Weigh Mode.

2. Press UNITS and exit immediately to the Weigh Mode.

- Pressing the UNITS key will not clear the accumulator.


### 2.11. Clearing the Accumulators

1. Press and hold the $\mathbf{B G} /$ Net key for three (3) seconds.

- The display will indicate "Sleep" and then display the current setting.

2. Press Right Arrow key.

- "CLr.ACC" will display.

3. Press the MENU key, then the Right Arrow key to toggle the available settings.
Available selections include the following settings.
CIr.YES (Clear the Accumulator) CLr. NO (Do not Clear the Accumulator)
4. Press ENTER to enter the selection.

### 2.12. Piece Counting

5. Place the empty weighing container on the Scale Platform.
6. Press TARE.

- This stores the container weight the only, placing the scale in the Net Mode.
- "0 Net Weight" should display on the indicator.

7. Press B/G NET.

- The Display prompts to "Add" a number of sample parts to the container.

8. Pressing the $\mathbf{B} / \mathbf{G} \mathbf{N E T}$ key repeatedly prompt the user to;
"Add 1", "Add 5", "Add 10", "Add 25", Add 50", or "Add 100" parts.
9. Add the required sample to the container, then press UNITS.

- The Display alternates between indicating the weight and the number of pieces.

10. Add the remaining parts to the container.

- The display will update and continue to alternate between the Weight and Number of Pieces, including the original sample.


## 11. Press B/G NET.

- Pressing the B/G NET key will skip adding the Current Piece to the Total Register and return to the Weigh Mode.

See the Print Example below.


| $09: 52 A M$ |  |
| :---: | :---: |
| $03-11-09$ |  |
| 7.395 lb | GR |
| 1.000 lb TA |  |
| 6.395 lb NT |  |
| 457 Pieces |  |
| 457 Total Pieces |  |

NOTES: If the prompts do not occur, clear the Accumulator and start over. The operating mode must be set to PIECE COUNT \& TOTAL to function.

### 2.13. Piece Count and Total

This feature enables the FB2255 to count and display the Net Weight of the counted items, and to display the total amount of those items.

1. Place the container on the scale platform.
2. Press TARE to calculate the container weight.
3. The Display should indicate $\mathbf{O}$ NET WEIGHT.
4. Press the B/G NET key.
5. When the display prompts to "Add", add a number of sample parts to the Container.
6. Press B/G NET repeatedly until the display reads to; "Add 1", "Add 5", "Add 10", "Add 25", Add 50", or "Add 100" parts.
7. Add the required sample to the container.

- The Display will alternate between the Weight and Number of Pieces, including the original sample.

8. Add the remaining parts to the container.

- The Display will update and continue to alternate between the Weight and Number of Pieces, including the original sample.

9. Press B/G NET.

- The Display will alternate between the "Total" legend and the Total Number of Pieces Accumulated.

10. Press UNITS to return to the Weigh Mode.

NOTE: If the prompts do not occur, clear the ACCUMULATOR and start over.

- The Operating Mode must be set to Piece Count \& Total to function.
- To reset Piece Count - see "CLEARING THE ACCUMULATOR".


### 2.14. Peak Weight

The Peak Weight feature records the heaviest stable or unstable load $t$ placed on the scale, and its time and date.

1. Press and hold ZERO for three (3) seconds.

- The display will alternate between the Peak Weight Value, the time and date for thirty (30) seconds, then return to the Weigh Mode.

2. Press UNITS to end the process. and exit to the Weigh Mode.

- Pressing the UNITS key will not clear the accumulator.
- Conditional upon programming the Operating Mode to ACCUMULATION, PIECE COUNT, OR PIECE COUNT and TOTAL.
- The FB2255 will display total number of Pieces, Weight, and Time-out [thirty (30) seconds].
- Conditional upon programming the Operating Mode to PEAK HOLD STABLE or PEAK HOLD UNSTABLE.
- The FB2255 will display Time, Date, Peak Weight, and Time Out [thirty (30) seconds].


## Section 3: Serial Communication Wiring



### 3.1. JP3 Jumper Configuration]

| JP3 | RS232 | RS485 | RS422* | PORT |
| :---: | :---: | :---: | :---: | :---: |
| $1-2$ | Out | $\mathbf{1 2 0}$ Ohm <br> Resistor | $\mathbf{1 2 0}$ Ohm <br> Resistor | COM1 |
| $3-4$ | Out | In | Out | COM1 |
| $5-6$ | Out | In | Out | COM1 |
| $7-8$ | Out | In | Out | COM2 |
| $9-10$ | Out | In | Out | COM2 |
| $11-12$ | Out | $\mathbf{1 2 0}$ Ohm <br> Resistor | $\mathbf{1 2 0}$ Ohm <br> Resistor | COM2 |

*Port should be set to RS485.

NOTE: 120 ohm Termination Resistors are required if the receiver is the
last node on the network.

### 3.2. TB4 Wiring connections, COM1 [A], COM2 [B], and COM2 [C]

| TB4 (A) | RS232 | RS485 | RS422* | PORT |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Rx-Receive Data | (-) RS485 | RS422 (-) Rx | COM1 |
| 2 | Tx - Transmit Data | (-) RS485 | RS422 (-) Tx | COM1 |
| 3 | CTS - Clear-to-Send | (+) RS485 | RS422 (+) RX | COM1 |
| 4 | GND -- Ground | GND | GND | COM1 |
| 5 | RTS - Ready-to-Send | (+) RS485 | RS422 (+) Tx | COM1 |
| TB4 (B) | RS232 | RS485 | RS422* | PORT |
| 1 | Rx-Receive Data | (-) RS485 | RS422 (-) Rx | COM2 |
| 2 | TX - Transmit Data | (-) RS485 | RS422 (-) Tx | COM2 |
| 3 | CTS - Clear-to-Send | (+) RS485 | RS422 (+) Rx | COM2 |
| 4 | GND - Ground | GND | GND | COM2 |
| 5 | RTS - Ready-to-Send | RS485 | RS422 (+) Tx | COM2 |
| TB4 (C) | 20 MA | RS485 | RS422 | PORT |
| 1 | (+) TX - Remote Display Passive, 20 mA Output |  |  | COM2 |
| 2 | (-) TX - Remote Display Passive, 20 mA Output |  |  | COM2 |
| 3 | (+) 7.5 V Bluetooth ${ }^{\text {® }}$ Technology Supply |  |  |  |

*Port should be set to RS485.

### 3.3. TB5 Remote Switch Inputs

| 1 | Ground |  |
| :--- | :--- | :--- |
| 2 | Ground |  |
| 3 | Ground |  |
| 4 | Print | Connect to ground to perform programmed Print function |
| 5 | Tare | Connect to ground to Tare off Gross weight |
| 6 | B/G Net | Connect to ground to Select Gross/Tare displays |
| 7 | Zero | Connect to ground to Zero Platform Weight |
| 8 | Units | Connect to ground to change to alternate weight units |

### 3.4. Remote Display Active Keys

| INSTRUMENT | FB2255 ACTIVE FRONT PANEL KEYS |
| :---: | :--- |
| FB2200 | No Active Keys |
| FB2255 | Units, Zero, Gross Net, Auto Tare, Print |
| FB2255 | Units, Zero, Gross Net, Auto Tare, Print |
| $\mathbf{2 3 0 0}$ | No Active Keys |
| $\mathbf{2 5 0 0}$ | No Active Keys |
| $\mathbf{2 8 0 0}$ | No Active Keys |
| $\mathbf{5 2 0 0 A}$ | Units, Gross Net |

## Section 4: Input / Output

## 4.1. $\mathbf{3 5 5 0}$ Tape Printer

| Transmission | RS232 |
| :--- | :--- |
| Baud Rate | $\mathbf{9 6 0 0}$ |
| Data Bits | $\mathbf{8}$ |
| Stop Bit | $\mathbf{1}$ |
| OUTPUT | "BUTTON" for Print Key |



Printer Cable (15599) is used for both printers.

### 4.2. Okidata 186 T Form Printer

| Transmission | RS232 |
| :--- | :--- |
| Baud Rate | $\mathbf{9 6 0 0}$ |
| Data Bits | $\mathbf{8}$ |
| Stop Bit | $\mathbf{1}$ |
| OUTPUT | "BUTTON" for Print Key |


| Switch 7 (SW2) | DTR Signal |
| :--- | :--- |
| ** Space after power on | ON |
| Space when printer is selected | OFF |
| Switch 8 (SW2) | Not Used |

### 4.2. Okidata 186 T Form Printer, Continued



Follow these steps to change Menu Settings.

1. To enter MENU MODE, press and hold SELECT while turning on the printer.

- The "12" and "UTILITY" LEDs will blink.

2. With the printer in the Menu Mode, press SELECT to print the complete menu.

- The current default settings print out.
- It is recommended to use tractor fed paper.

NOTE: The Printed Menu selections are different for each Emulation Mode.
3. Press LINE FEED to select the relevant group to be changed.

- The group is the left-hand column on the Menu Printout.

4. Press FORM FEED to select the relevant item within the selected group.

- The Item is the center column on the Menu Printout.

5. Press TOF SET to cycle through the settings available for the item to change.

- The settings are the right-hand column on the Menu Printout.

6. To continue making changes: press LINE FEED for the next group or press FORM FEED for the next item.

- Repeat as needed until finished changing settings.

7. Press PITCH and MODE together to save the changes and exit the Menu Mode.

NOTES: Exiting the Menu Mode by turning off the printer will cancel any changed settings.

### 4.2. Okidata 186 T Form Printer, Continued

- Printed menu's changes according to the Printer Emulation Mode.
- If printer emulation mode is not set to ML, set this first, then reprint the menu.

| GROUP <br> (Press LINE FEED <br> to change) | ITEM <br> (Press FORM FEED <br> to change) | SET <br> (Press TOF SET <br> to change) |
| :---: | :---: | :---: |
| Printer Control | Emulation Mode | ML |
| Font | Print Mode | Utility |
| Font | DRAFT Mode | SSD |
| Font | Pitch | 10 CPI |
| Font | Proportional Spacing | No |
| Font | Style | Normal |
| Font | Size | Single |
| Symbol Sets | Character Set | Standard |
| Symbol Sets | Language Set | American |
| Symbol Sets | Zero Character | Slashed |
| Symbol Sets | Code Page | USA |
| Vertical Control | Line Spacing | 6 LPI |
| Vertical Control | Skip Over Perforation | No |
| Vertical Control | Page Length | 11" |
| Set-Up | Graphics | Bi-directional |
| Set-Up | 7 or 8 Bits Graphics | 7 |
| Set-Up | Receive Buffer Size | 128K |
| Set-Up | Paper Out Override | No |
| Set-Up | Paper Registration | 0 |
| Set-Up | 7 or 8 Bits Data Word | 8 |
| Set-Up | Operator Panel Function | Full Operation |
| Set-Up | Reset Inhibit | No |
| Set-Up | Print Suppress Effective | Yes |
| Set-Up | Auto LF | No |
| Set-Up | Print DEL Code | Yes |
| Set-Up | Time Out Print | Invalid |
| Set-Up | Auto Select | No |
| Set-Up | Impact Mode | Normal |

### 4.2. Okidata 186 T Form Printer, Continued

GROUP ITEM SET

| Parallel I/F | I-Prime | Buffer Print |
| :--- | :--- | :--- |
| Parallel I/F | Pin 18 | +5 v |
| Parallel I/F | Bi-Direction | Enable |

Serial PCB Assy Switch Settings: (SW1) (** indicates typical Fairbanks setting)

| Parity Type | Switch 1 (SW1) |
| :--- | :--- |
| ** Odd parity | ON |
| Even parity | OFF |

Parity Switch 2 (SW1)

| $* *$ No parity | ON |
| :--- | :--- |
| With parity | OFF |
| Data Bits | Switch $3($ SW1 $)$ |
| $* * 8$ Bits | ON |
| 7 Bits | OFF |


| Protocol | Switch 4 (SW1) |
| :--- | :--- |
| Ready/Busy | ON |
| $* *$ X-ON, X-OFF | OFF |
|  |  |
| Test Select | Switch 5 (SW1) |
| $* *$ Circuit | ON |
| Monitor | OFF |
| Mode Select | Switch 6 (SW1) |
| ** Print mode | ON |
| Test mode | OFF |


| Busy Line Selection | Switch 7, 8 (SW1) |
| :--- | :--- |
| SSD- Pin 11 | OFF, ON |
| SSD+ Pin 11 | OFF, OFF |
| ** DTR- Pin 20 | ON, ON |
| RTS- Pin 4 | ON, OFF |

(SW2) (** indicates typical Fairbanks setting)

### 4.2. Okidata 186 T Form Printer, Continued

| Transmission Speed | Switches 1, 2, 3 (SW2) |
| :--- | :--- |
| 19,200 bps | ON, ON, ON |
| $* * 9,600$ bps | OFF, ON, ON |
| $4,800 \mathrm{bps}$ | ON, OFF, ON |
| $2,400 \mathrm{bps}$ | OFF, OFF, ON |
| $1,200 \mathrm{bps}$ | ON, ON, OFF |
| 600 bps | OFF, ON, OFF |
| 300 bps | ON, OFF, OFF |
| 110 bps | OFF, OFF, OFF |
|  |  |
| DSR Input Signal | Switch 4 (SW2) |
| Active | ON |
| $* *$ Inactive | OFF |
| Buffer Threshold | Switch 5 (SW2) |
| 32 bytes | ON |
| $* * 256$ bytes | OFF |
|  |  |
| Busy Signal Timing | ON |
| ** 200 ms minimum | OFF |
| 1 second minimum |  |

### 4.3. Okidata 420 Form Printer

Program the FB2255 the following settings.

| Transmission | RS232 |
| :--- | :--- |
| Baud Rate | $\mathbf{9 6 0 0}$ |
| Data Bits | $\mathbf{8}$ |
| Stop Bit | $\mathbf{1}$ |
| OUTPUT | "BUTTON" for Print Key |

NOTE: Always restart the printer after making any switch changes.

| SEL |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEL |  | LF | FF/LOAD | TEAR | PARK | QUIET |
| MENU | SHIFT | Micro Feed Down | $\begin{gathered} \text { Micro Feed } \\ \text { Up } \end{gathered}$ |  |  | TOF |
| EXIT |  | GROUP | ITEM | SET | PRINT |  |
| POWER | ALARM | MENU |  |  |  |  |

1. To enter MENU MODE, press and hold the SHIFT key while pressing the SELECT key.

- The MENU legend will be illuminated while in the Menu Mode.

2. With the printer in the Menu Mode, press PRINT to print the complete menu.

- The current default settings print out.
- It is recommended to use tractor fed paper.

NOTE: The Printed Menu selections are different for each Emulation Mode.
3. Press GROUP to select the relevant group that needs to be changed.

- Found on the left-hand column on the Menu Printout.

4. Press ITEM to select the relevant item within the selected group.

- Found on the Item is the center column on the Menu Printout.

5. Press SET to cycle through the settings available for the item to change.

- The settings are the right-hand column on the Menu Printout.

6. Press and hold the SHIFT key while pressing the SELECT key to exit the Menu Mode.

### 4.3. Okidata 420 Form Printer, Continued

NOTE: If the printer is turned off before exiting the MENU MODE, all changes will be lost.

| GROUP <br> (Press LINE FEED <br> to change) | ITEM <br> (Press FORM FEED <br> to change) | SET <br> (Press TOF SET <br> to change) |
| :---: | :---: | :---: |
| Printer Control | Emulation Mode | IBM PPR |
| Font | Print Mode | Utility |
| Font | DRAFT Mode | HSD |
| Font | Pitch | 10 CPI |
| Font | Proportional Spacing | No |
| Font | Style | Normal |
| Font | Size | Single |
| Symbol Sets | Character Set | Set 1 |
| Symbol Sets | Language Set | American |
| Symbol Sets | Zero Character | Slashed |
| Symbol Sets | Code Page | USA |
| Rear Feed | Line Spacing | 6 LPI |
| Rear Feed | Form Tear-off | Off |
| Rear Feed | Skip Over Perforation | No |
| Rear Feed | Page Length | 11" |
| Bottom Feed | Line Spacing | 6 LPI |
| Bottom Feed | Form Tear-off | Off |
| Bottom Feed | Skip Over Perforation | No |
| Bottom Feed | Page Length | 11" |
| Top Feed | Line Spacing | 6 LPI |
| Top Feed | Form Tear-off | Off |
| Top Feed | Skip Over Perforation | No |
| Top Feed | Page Length | 11" |

### 4.3. Okidata 420 Form Printer, Continued

| GROUP | ITEM | SET |
| :--- | :--- | :--- |
| Set-Up | Graphics | Uni-directional |
| Set-Up | Receive Buffer Size | $64 K$ |
| Set-Up | Paper Out Override | No |
| Set-Up | Print Registration | 0 |
| Set-Up | Operator Panel Function | Full Operation |
| Set-Up | Reset Inhibit | No |
| Set-Up | Print Suppress Effective | Yes |
| Set-Up | Auto LF | No |
| Set-Up | Auto Select | No |
| Set-Up | SI Select Pitch (10CP) | 17.1 CPI |
| Set-Up | SI Select Pitch (12CPI) | 12 CPI |
| Set-Up | Time Out Print | valid |
| Set-Up | Auto Select | No |
| Set-Up | Centering Position | DEFAULT |
| Set-Up | ESC SI Pitch | 17.1 CPI |
| Set-Up | Power Saving | Enable |
| Set-Up | Power Save Time | 5 Min |
|  |  |  |
| Paralle I/F | I-Prime | Buffer Print |
| Paralle I/F | Pin 18 | +5 v |
| Parallel I/F | Bi-Direction | Enable |
| Serial I/F |  |  |
| Serial I/F | Parity | None |
| Serial I/F | Serial Data $7 / 8$ Bits | 8 Bits |
| Serial I/F | Protocol | X-On/X-Off |
| Serial I/F | Diagnostic Test | No |
| Serial I/F | Busy Line | SSD- |
| Serial I/F | Baud Rate | 9600 BPS |
| Serial I/F | DSR Signal | Invalid |
| Serial I/F | DTR Signal | Ready on Pwr up |
|  | Busy Time | $200 ~ m s ~$ |
|  |  |  |

### 4.4. TM-U295 Ticket Printer

| Transmission | RS232 |
| :--- | :--- |
| Baud Rate | $\mathbf{9 6 0 0}$ |
| Data Bits | $\mathbf{8}$ |
| Stop Bit | $\mathbf{1}$ |
| OUTPUT | "BUTTON" for Print Key |

Set the dip switches to the following.

- 1 and 3 are ON.
- The rest are OFF.

NOTE: Always restart the printer after making any switch changes.


### 4.5. TM-U590 Tīcket Printer

| Transmission | RS232 |
| :--- | :--- |
| Baud Rate | $\mathbf{9 6 0 0}$ |
| Data Bits | $\mathbf{8}$ |
| Stop Bit | $\mathbf{1}$ |
| OUTPUT | "BUTTON" for Print Key |

Set the dip switches to the following.

- DSW 1
- 1, 3 and 7 are ON only.
- DSW 2 - All are OFF.



### 4.6. Remote Display



## Part \# 20903



Using the $\mathbf{2 0} \mathbf{~ m A ~ S e r i a l ~ C u r r e n t ~ L o o p ~ O u t p u t ~ w i l l ~ a l l o w ~ t r a n s m i s s i o n ~}$ distances up to 1000 cable feet.

- Interface Cable (20903) is recommended.

| Port | $\mathbf{2}$ |
| :--- | :--- |
|  | C-Loop |
| Baud Rate | $\mathbf{2 4 0 0}$ |
| Parity | Odd |
| Stop Bit | $\mathbf{1}$ |
| Current | Passive |

The remote display must be wired for $\mathbf{2 0} \mathbf{~ m A ~ A c t i v e , ~ a n d ~ p r o g r a m m e d ~ t o ~ m a t c h ~}$ the FB2255.

- Wiring to the FB2255: TB4 (C) to the Remote Display.

| 1 | Tx + Passive 20 mA Output |
| :--- | :--- |
| 2 | Tx - Passive 20 mA Output |

Wire the Remote Display to the FB2255 as shown in this diagram.

| FB2255 TB-4 (C) | 1600 Series |
| :---: | :---: |
| $\# 1-$ TX (+) | $\# 1$ |
| $\# 2-$ TX (-) | $\# 2$ |
|  | $\# 7$ |
|  | $\# 8$ |
| FB2255 TB-4 (C) | 1500 Series |
| $\# 1$ - TX (+) | $\# 1$ |
| $\# 2-T X ~(-)$ | $\# 2$ |
|  | $\# 5$ |

### 4.6.1. PROGRAMMING THE 4-20MA ANALOG OUTPUT MODE

Access to this features is conditional, and depends upon whether it is enabled in the FB2255 Internal Programming.

1. Press and hold the UNITS key for three (3) seconds

NOTE: If 4-20mA Analog Output has been installed and programmed, setting 4-20 to NO in the APPS Menu will prevent access to it from the front panel while the analog output continues to operate.
2. Select GROSS or NET.

- The 4-20 mA Analog Output will continue to track the selection regardless of the currently selected Weigh Mode.

3. Press MENU.
4. Press the right arrow key to toggle the available settings.
5. Press ENTER to select an option.

Available selections include the following.

- Gross
- Net


### 4.6.2. PROGRAMMING THE 4mA WEIGHT VALUE

4.20 Lo displays, followed by the current setting.

1. Key in the correct Weight Value with the 0-9 keys.
2. Press ENTER.

This weight entry results in a 4mA Output.

### 4.6.3. PROGRAMMING THE 20mA WEIGHT VALUE

4.20 Hi displays, followed by the current setting.
3. Key in the correct Weight Value with the 0-9 keys.
4. Press ENTER.

This weight entry results in a 20 mA Output.

## Section 5: Fieldhus/Bluetooth

### 5.1. Fieldhus Installation

Fieldbus is a general term that describes an all-digital two-way communications system that interconnects measurement and control equipment such as sensors, actuators and controllers.

- Fieldbus traces its beginnings in the automotive industry, where efforts to simplify and reduce wiring resulted in a multiplexed Controller Area Network (CAN) system of modules installed at various points of a car

For example, many cars have multiple controls on the door, such as power-window, power-mirror, power-lock and power-seat controls.

- To eliminate the thick bundle of wires of the older method, a driver's-door module monitors all of the switches.
- If the driver presses the window switch, the door module closes a relay that provides power to the window motor.
- If the driver presses the switch to adjust the passenger-side mirror, the driver's door module sends a packet of data onto the communication bus of the car.
- This packet tells a different module to energize one of the power-mirror motors. In this way, most of the signals that leave the driver's door are consolidated onto the two wires that form the communication bus.

As time has progressed, many different Fieldbus types have been developed, each with different characteristics and specifications.

- Very simply, they serve as a Local $\underline{\text { Area }} \underline{\text { Network (LAN) }}$ for instrumentation used in automatic process control and manufacturing applications.
- The LAN is a digital, bi-directional, multi-drop, serial-bus communications network used to link field devices (often referred to as "Nodes"), such as controllers, transducers, actuators and sensors.

There are a number of different manufacturers that produce Fieldbus devices.

- Each produces different hardware interfaces, wiring and connector types, speed, and the amount of bytes of data that can be exchanged on the network, among other things.

Additionally, the current Fieldbus communications network is replacing the older 420 mA Analog Signal.

- The older 4-20 mA analog signal requires each device to have its own set of wires and its own connection points.
- A Fieldbus eliminates this need as, generally, twisted pair wiring is used.
- All devices on the network are now connected together.

Fairbanks Scales currently offers three different Fieldbus Devices: DeviceNet ${ }^{\text {TM }}$, ControlNet ${ }^{\text {M }}$, Profibus ${ }^{\circledR}$, and Ethernet/IP.
For more information and EDS files, see http://www.hms.se/default.shtml.

### 5.2. Fieldhus Connections

The term FIELDBUS usually describes an all-digital two-way communications system that interconnects measurement and control equipment such as sensors, actuators and controllers.

The Fieldbus assembly connects to the 32-pin header on the FB2255 main PCB Assembly.

It is provided with two (2) standoffs which support the right side of the card.


### 5.2.1. OVERVIEW OF TERMS

There are currently four (4) different of Fieldbus Interfaces listed as standard accessories for the FB2550 Instrument.

## - DEVICE NET ${ }^{\text {Tw }}$ (29578)

- A network system to interconnect control devices for data exchange.
- It uses a differential serial bus, called Controller Area Network (CAN), as the backbone technology and defines an application layer to cover a range of device profiles.


## - CONTROL NET ${ }^{\circledR}$ (31979)

- An open control network in real-time, for high-throughput applications.


### 5.2.1. OVERVIEW OF TERMS, CONTINUED

- PROFIBUS ${ }^{\circledR}$ (29576)
- Non-powered two-wire (RS485) network, with up to 126 nodes, transferring a maximum of 244 data bytes per node per cycle.
- ETHERNET/IP (29873)
- Dynamic Host Configuration Protocol (DHCP) is used for address requests.
- The data is transmitted continuously from this module.
- The IP address may be made static by downloading the IP Configuration Tool Software.

ETHERNET/IP can be easily confused as a simple combination of EtherNet and the Internet Protocol. Instead, it is an Industrial Application Layer Protocol used for communication between industrial control systems and their components.

- Such components include Programmable Automation Controller, Logic Controller, or an I/O System.
The "IP" in EtherNet/IP is not an abbreviation for "Internet Protocol", but instead, it stands for "Industrial Protocol".



### 5.2.2. DEVICENET (29578)

DEVICENET is a low-cost communications link that connects industrial devices to a network, eliminating expensive hardwiring.

- It is based on a broadcast-oriented, communications protocol the CAN.
- The CAN Protocol was originally developed by BOSCH for the European automotive market for replacing expensive wire harnesses with low-cost network cable.
- The CAN Protocol has fast response and high reliability for applications like anti-lock brakes and air bags.

DEVICENET also provides power to the network. This allows devices with limited power requirements to be powered directly from the network.

- This reduces connection points and physical size.
- The maximum network size is up to 64 Nodes, with message data packets up to 8 bytes.

| Wire | SIGNAL | DESCRIPTION |
| :---: | :---: | :--- | :--- |
| 1 | V | Negative bus supply voltage |
| 2 | CAN_L | CAN low bus line |
| 3 | SHIELD | Cable shield |
| 4 | CAN_H | CAN high bus line |
| 5 | V+ | Positive bus supply voltage |



NOTE: Additional information and EDS files are available at the following website. http://www.hms.se/products/devicenet.shtml.

### 5.2.2. DEVICENET (29578), CONTINUED

NETWORK STATUS LED

| STATE | INDICATION |
| :--- | :--- |
| OFF | Not online/ No power |
| GREEN | Online, one or more connection established |
| FLASHING GREEN (1 Hz) | Online, no corrections established |
| Red | Critical link failure |
| Flashing Red (1 Hz) | One or more connections timed out |
| Alternating Red/Green | Self-test |



MODULE STATUS LED

| STATE | INDICATION |
| :--- | :--- |
| OFF | No power |
| GREEN | Operating in normal condition |
| FLASHING GREEN (1 Hz) | Missing/Incomplete configuration/ Device needs commissioning |
| Red | Unrecovrerable faults) |
| Flashing Red (1 Hz) | Recoverale faults) |
| Alternating Red/Green | Self-test |

### 5.2.3. CONTROLNET (31979)

CONTROLNET is an open control network running in "real-time", for high-throughput applications.

- It uses a Control and Information Protocol (CIP), combining the functionality of an I/O Network and a Peer-to-Peer Network.
- CONTROLNET is based on the Producer/Consumer Model, permitting all nodes on the network to simultaneously
 access the same data from a single source.
- Maximum of 99 nodes, with no minimum distance between nodes
- The Control net card uses BNC connectors.



## SPECIAL NOTES

For signal redundancy, both connectors should be used.

- If not, use either Connector A or B.

Network Status LED A and Module Status LED correspond to LED 1 and LED 2 in the instance attributes of the Anybus Object.

- They are available in the application interface, but the LED placement on the front does not conform to the standard Anybus CompactCom placement of LED 1 and LED 2.



### 5.2.3. CONTROLNET (31979), CONTINUED

NETWORK STATUS

| LED | STATE | INDICATION |
| :--- | :--- | :--- |
| A and B | OFF | Not online / No power |
|  | Flashing Red (1 Hz) | Incorrect node configuration, duplicate MAC ID etc. |
|  | Alternating Red/Green | Self test of bus controller |
|  | Red | Fatal event or faulty unit |
| A or B | OFF | Channel is disabled |
|  | Alternating Red/Green | Invalid link configuration |
|  | Flashing Green (1 Hz) | Temporary errors (node self-corrects) or node is not <br> configured to go online. |
|  | Green | Normal operation |
|  | Flashing Red $\mathbf{( 1 \mathbf { H z } )}$ | Media fault or no other nodes on the Network |

## MODULE STATUS

| STATE | INDICATION |
| :--- | :--- |
| OFF | No power |
| GREEN | Operating in normal condition, controlled by a Scanner in RUN state. |
| FLASHING GREEN <br> $(\mathbf{1 ~ H z})$ | The module has not been configured or the Scanner is in the Idle state. |
| Red | Unrecovrerable fault(s), EXCEPTION, |
| Flashing Red (1 <br> $\mathrm{Hz})$ | Media fault or no other nodes on the Network |


| No. | DESCRIPTION |
| :---: | :--- |
| 1 | Network Status LED A |
| 2 | Module Status LED |
| 3 | Network Status LED B |
| 4 | ControlNet Connector A |
| 5 | ControlNet Connector B |



### 5.2.4. PROFIBUS (29576)

PROFIBUS is one of the best-known industrial fieldBus protocols from Europe.

- It is an established standard, used in a wide range of applications as a multi-application communications link for industrial devices.
- The ProfiBus protocol was originally developed by a committee founded by the
 German government.

PROFIBUS utilizes a non-powered two-wire (RS-485) Network.

- A ProfiBus Network may have up to 126 nodes, transferring a maximum of 244 bytes data per node/ per cycle.
- Baud (Communication) Rates are selectable, and overall end-to-end network distance varies with speed.
- The maximum standard Baud Rate is $\mathbf{1 2 M b p s}$, with a maximum distance of 100M ( 328 ft ), and 1200 M ( 3936 ft .) at 93.75 Kbps without repeaters.
- PROFIBUS connects to a wide variety of field devices including the following:
- Discrete and analog I/O Drives.
- Robots.
- HMI/MMI products.
- Pneumatic valves.
- Barcode readers.
- Weigh scales.
- Transducers.
- Flow measuring equipment.


| PIN | SIGNAL | DESCRIPTION |
| :---: | :---: | :--- |
| 3 | B-Line | Positive RxxD/TxD, Rs485 level |
| 4 | RTS | Request to Send |
| 5 | GND | Ground (Isolated) |
| 6 | +5 Bus <br> Output | $+5 V$ termination power (Isolated, <br> short circuit protected) |
| 8 | A-Line | Negative RXD/TxD, RS485 level |

### 5.2.4. PROFIBUS (29576), CONTINUED

## OPERATION MODE LED

| LED STATE | DESCRIPTION |
| :--- | :--- |
| OFF | Not online or No power |
| Green | Online/ Data Exchange |
| Flashing Green | Online, clear |
| Flashing Red (1 flash) | Parameterization error |
| Flashing Red (2 flashes) | Profibus configuration error |

## MODULAR STATUS LED

| LED STATE | DESCRIPTION | COMMENTS |
| :--- | :--- | :--- |
| OFF | No power -OR - not initialized | Module state = "SETUP" OR NW-INIT" |
| Green | Initialized | Module has left the NW_INIT state |
| Flashing Green | Initialized, diagnostic events(s) present | Extended diagnostic bit is set |
| Red | Exception error | Module state = EXCEPTION |



NOTE: Additional information and EDS files are available at the following website. http://www.hms.se/default.shtm.

### 5.2.5. ETHERNET / IP DIAGNOSTIC LEDS

The Ethernet/IP module uses Dynamic Addressing.

- Dynamic Host Configuration Protocol (DHCP) is used for address requests.
- The data is transmitted continuously from this module.
- The IP address may be made static by downloading the IP Configuration Tool Software from the following site:
http://www.hms.se/support/support.asp?PID=368\&Product Type=Anybus-CompactCom.


1. Network Status LED
2. Module Status LED
3. Link/Activity
4. Ethernet Interface (RJ-45) (Standard Cat 5 Cable)

- Using this download, it is possible to change the IP, Sub Net and Gateway addresses of an Ethernet/IP Module.
- To change an address, double click on the IP address field and enter the changes.


## Shown below is the Network Status LED Chart

| STATE | DESCRIPTION |
| :--- | :--- |
| Off | Not online / No power |
| Green | Online, one or more connections established. |
| Flashing | Online, no connections established |
| Red | Duplicate IP address, FATAL error |
| Flashing Red | One or more connections timed out |

Shown below is the Module Status LED Chart

| STATE | DESCRIPTION |
| :--- | :--- |
| Off | No power |
| Green | Controlled by a scanner in Run state |
| Flashing Green | Not configures, or Scanner in idle state |
| Red | Major fault (EXCEPTION-state, FATAL error, etc.) |
| Flashing Red | Recoverable fault(s) |

## Shown below is the Link / Activity LED Chart

| STATE | DESCRIPTION |
| :--- | :--- |
| Off | No link, no activity |
| Green | Link established |
| Flickering Green | Activity |

For more information and EDS files, see http://www.hms.se/default.shtml.

### 5.3. Bluetooth ${ }^{\circledR}$ Technology Device

The Bluetooth ${ }^{\circledR}$ Option replaces direct wiring between two devices.

- The Bluetooth ${ }^{\circledR}$ Interface uses either Port 1 or Port 2 Serial Output.
- RS232 Serial Interface to Bluetooth ${ }^{\circledR}$ Interface with a range of 100 meters (328 feet).
The Bluetooth ${ }^{\circledR}$ Option operates either as a Client or Server, depending on its connecting device.
If its connected to a printer, the FB2255 will
 be a Server. If connected to a PC, it is a Client.

Shown below are some Bluetooth ${ }^{\circledR}$ products with their features.

| MODEL NO. | MODEL NAME | DESCRIPTION |
| :---: | :---: | :---: |
| 29515 | Bluetooth ${ }^{\circledR}$ Accessory, Class I, for non-FB2255 device | - Power source required for non-FB2255 side of the connection. <br> - 5-12 VDC, USB power cable provided. <br> - PC interfacing software provided. |
| 29639 | AC Power adapter for Bluetooth ${ }^{\circledR}$ Accessory 29215 | - For use if USB power cable not applicable. |
| 29516 | $\begin{aligned} & \text { Bluetooth }^{\circledR} \text { Accessory, Class I, } \\ & \text { FB2255 } \end{aligned}$ | - FB2255 provides power <br> - RoHS compliant <br> - Includes cable 29402 |

The Bluetooth ${ }^{\circledR}$ device is supplied with a DB-9 female connector.
Shown below is the wiring code / color code to connect the FB2255 and the Bluetooth ${ }^{\circledR}$ Device.

| FB2255 TB 4 | BLUETOOTHB <br> DEVICE | FB SUPPLIED <br> CABLE |
| :--- | :--- | :--- |
| Pin 1 | Pin 2 | Red |
| Pin 2 | Pin 3 | White |
| Pin 4 | Pin 5 | Black |
| Pin 13 | Pin 9 | Green |

### 5.3. Bluetooth ${ }^{\circledR}$ Technology Device, Continued

Set the 4-position Dip Switch on each device as shown below.

| $1,2,3$ | ON |
| :---: | :--- |
| 4 | OFF |


| Baud Rate | $\mathbf{9 6 0 0}$ |
| :--- | :--- |
| Data Bits | $\mathbf{8}$ |
| Parity | None |
| Stop Bit | $\mathbf{1}$ |

Follow these steps to installing the Bluetooth ${ }^{\circledR}$ Devices.
5. Turn on both Bluetooth ${ }^{\circledR}$ Devices with the SLIDE SWITCH on their sides.
6. Press the RESET BUTTON on each one.
7. Press the PAIRING BUTTON of Device \#1 for two (2) seconds

- The Standby LED turns OFF.
- The Connect LED blinks three (3) times every two (2) seconds.
- Keep the power ON.


8. Press the PAIRING BUTTON of Device \#2 for two (2) seconds.

- The Standby LED turns OFF.
- The Connect LED blinks three (3) times every two (2) seconds.

9. Press the Pairing Button again for two (2) seconds until the Connect LED blinks every half $(1 / 2)$ second.

- Wait for Devices \#1 and \#2 to connect to each other.
- The Connect LEDs of both will be solid green.
- This connection process takes about ten (10) seconds.
- If any other Bluetooth ${ }^{\circledR}$ devices are nearby, it may take longer.



### 5.3. Bluetooth ${ }^{\circledR}$ Technology Device, Continued

10. Turn Device \#1 OFF, and then back ON.

- The Connect LED light blinks green twice every three (3) seconds.

11. Turn Device \#2 OFF, and then back ON.
12. The Connect LED light blinks green once every second.

Configuration is now complete. Both devices are configured to make automatic connection to each other whenever they are powered on.

## Section 6: PC2255 Utility Software



### 6.1. Introduction

- The PC2255 utility software program can be used to set up and configure the FB2255.
- It is required in order to program certain features, such as custom units and custom ticket vector programming.
- The FB2255 uses Port 2 to communicate to the computer.


### 6.2. Communication Settings

1. Access the COM Port Settings of the computer by pressing F2.

The Standard Defaults are noted in the chart to the right.
2. Set VERSION setting to match the FB2255.

- It displays at the warm-up screen of the Instrument.

3. Set the FB2255 Port 2 to the same settings, and then exit from program mode.

| Baud Rate | $\mathbf{9 6 0 0}$ |
| :--- | :--- |
| Data Bits | $\mathbf{8}$ |
| Parity | None |
| Stop Bit | $\mathbf{1}$ |
| Mode | Continuous |



### 6.2. Communication Settings, Continued



1. Launch the PC2255.exe file.

- An image of the FB2255 will display on the computer monitor.
- The legend "CONNECTED" with a rotating baton will displayed.
- The weight display will duplicate what is shown on the FB2255.

2. Left-clicking the mouse on any key to transmit that command to the FB2255.

- This excludes the PRINT key.
- The legend "COMMAND SENT!" will display at the right.
- Mouse-clicking the ON/OFF key will terminate the PC2255 software program.


### 6.3. Communication Files

| PC2250 |  |
| :---: | :---: |
| $\vdots$ |  |
|  |  |

The default folder for all saved/uploaded parameter files is PC2255\SAVED.

### 6.4. Menu Bar

The PC2255 menu bar is located at the bottom of the display.


| BUTTON | FUNCTION |
| :---: | :--- |
| NEW | Loads the Parameters Menu with FB2255 default settings. |
| OPEN | Opens the SAVED folder to select a file. |
| SAVE | Saves the currently named file. |
| SAVE AS | Saves the current file and prompts for a file name. |
| UPLOAD | Uploads the current FB2255 settings to the PC2255. |
| DOWNLOAD | Downloads the current PC2255 settings to the FB2255. |
| EXIT | Exits the program. |

1. Press the UPLOAD button to retrieve the current FB2255settings to the PC2255.

- The FB2255 displays "PC".


2. Press the INTERNAL PROGRAMMING SWITCH.


### 6.4. Menu Bar, Continued

3. When the process is complete, click OK.

4. Click the DOWNLOAD button to retrieve the current PC2255 settings to the FB2255.

The FB2255 displays "PC".
5. Press the INTERNAL PROGRAMMING SWITCH.

6. When complete, click OK.
7. Press EXIT to close the Parameter Editor.


### 6.5. Configuration

1. Press F4 to enter the Parameters Editor.


Use one of the following methods that apply to programming the features.

- Click on the data item to highlight it, then type in the replacement data.
- Click the drop down arrow and selecting an available item.
- Click on the checkmark to select the option(s).
- Input the custom unit factor to set the conversion factor of the current primary weight data.


## CUSTOM UNIT PROGRAMMING EXAMPLE

To convert pounds to dry barrel units, enter the conversion factor, resolution and custom legend. The current primary weight will be multiplied by the conversion factor, rounded off to the custom resolution and printed with a custom legend.

### 6.6. Calibration

Settings from this window include the following options.

- Scale capacity
- Primary Units
- Auto Zero Tracking (AZT)
- Motion Band (BAL)
- Division Size
- Digital Filter
- Auto Tare settings

Actual test weight calibration is performed with


### 6.7. Fieldhus / 4-20 mA

The Anybus or DeviceNet Module is set up using the PC2255 Program and is supported by the following parameters.

## NODE ADDRESS

- Enter the Node Address of the Module.
- This is typically furnished by the customer.



## BAUD RATE

- Most Anybus Modules can automatically detect the network speed by using the Auto Baud feature.
- Device Net uses 125 K bps, 250K bps or 500K bps.


### 6.1. Fieldhus / 4-20 mA, Continued

## DATA TYPE

Data can be setup to output a 32 bit Integer word or a 32 bit floating point value.

## ENDIAN

The Endianess of a module is determined by the network type, but can be changed from Little Endian to Big Endian, or vice versa by using the "CHANGE ORDER" setting.


## LITTLE ENDIAN FORMAT OR INTEL ORDER

In Little Endian Format, the least significant byte is stored first, followed by the next three more significant bytes.

For example, a 32bit value of $0 \times 12345678$ would be stored in memory in LITTLE ENDIAN as shown below.

- Address + 0 0x78
- Address + 1 0x56
- Address + 2 0x34
- Address + $3 \quad 0 \times 12$


## BIG ENDIAN FORMAT OR MOTOROLA ORDER

In Big Endian Format, the most significant byte is stored first, followed by the next three least significant bytes.

For example, a 32bit value of $\mathbf{0 x 1 2 3 4 5 6 7 8}$ would be stored in memory in BIG ENDIAN as shown below.

- Address + $0 \quad 0 \times 12$
- Address + 1 0x34
- Address + 2 0x56
- Address + 3 0x78


### 6.1. Fieldhus / 4-20 mA, Continued

## OUTPUT

Data from the FB2255 comprises of three (3) 32-bit words.

- Gross Weight
- Tare Weight
- A 32bit Status Word
- Gross and Tare weights can be selected as either a 32-bit Integer or a 32-bit Floating Point Word.
- The Most significant Byte indicates the Weigh Mode "G" for Gross, and "N" for Net.
- The Next Order Byte indicates "O" Overcapacity, "M" Motion of the last command received. (See INPUT Commands)

The next order byte indicates the weight units.

- "I" pounds
- "k" kilograms
- "o" ounces
- "g" grams.

The Least Significant Byte indicates the number of decimal places, if the weight output is selected to be a 32-bit Integer word.

- If a Floating point word is selected, this byte will be " 0 ".


## INPUT

Single Byte Commands can be sent from the network.

- Although the input is read as a 32-bit word, only the Least Significant Byte is used in this process.
- When the command is sent and recognized, it is entered into the 32 -bit status byte in the Least Significant Command Byte location.
- New commands can be transmitted after transmitting a NULL command.


### 6.7. Fieldhus / 4-20 mA, Continued

## RECOGNIZED COMMANDS

| COMMAND | DESCRIPTION |
| :--- | :--- |
| Print Steam | See Custom Format PC2255. |
| Print Format Stream | CR, SPACE, STX, ENQ or Defined Poll <br> Character |
| Tare | "A" |
| Print Ticket | "p" or "P" |
| Zero | "Z" |
| Change Gross Net <br> Weight Mode | "G" |
| Change Units | "U" |

## DEBUG

- Data in the Anybus Module can be examined by clicking the START DEBUG button.
- It is stopped by clicking the STOP DEBUG button.
- The WRITE BUFFER contains three 32-bit words.
- Gross Weight, Tare Weight and the Status Word is the data sent to the Network.
- The Contents of the READ BUFFER, which is the data received from the network, is displayed as a 32-bit word.


### 6.8. Gustom Output-Settings

## CHECKSUM

- This setting determines whether a Checksum Character is enabled or not.
- Checksum is an error detection method that checks the integrity of the entire string of data that is transmitted.


## DELIMITED

This setting determines if a comma is added to the output string to separate data fields contained within the output string.

## HARDWARE HAND SHAKING

No current function. Set up for future use.

### 6.9. Gustom Output - Load

A variety of pre-packaged Output Strings is available.

1. Click the radio button that applies.

## $\checkmark \quad$ Default $=$ Fairbanks

2. Click OK to download the settings, or Cancel.

## - See Appendix 1: Data Output Formats.

$$
\checkmark \text { OK Are you sure?? Current settings will be lost! } \quad \times \text { Cancel }
$$





### 6.10. Custom Output - Build

1. Customize the Data Output String to suit the application requirements.

- The current structure of the output string is displayed at the bottom of the Custom Output page, in order of transmission from left-to-right.

2. Right-click in the selected DATA TYPE field to change data items.

- This opens a selection window containing many different data items.



### 6.11. Custom Output - Tokens

1. Select from a wide variety of different characters for the polling character.

- Start
- Stop
- Block
- Primary Units
- Secondary Units
- Weighing Mode
- Motion
- Capacity Characters

2. When entering a character that is not listed, select
USER DEFINED.


This will produce an additional data entry box as shown.
3. Right-click in the selected DATA ENTRY BOX to change data items.


### 6.11. Custom Output - Tokens, Continued

4. Make a selection, such as $\langle\mathrm{SOH}\rangle$, for example.

- This inserts a Start of Header character... otherwise known as a CTRL/A, or 0x01 HEX.

5. When entering a character not listed, select ENTRY.
6. Select ENTRY to insert a character using the keyboard, such as an A or a 1.


### 6.12. Custom Output - Weights

A variety of settings are available for the Weight Digits window. These choices include the following.

- Weight Digits
- Leading Zeros
- Justification
- Decimal Point
- Fixes Decimal

Places

- Include Polarity (checkbox)
- Positive Token
- Negative Token



### 6.13. Formatting Tickets

- Formatting tickets is easily performed with this drag and drop interface.
- The blue-dashes indicate the printable area of the ticket based on the ticket size and margins entered (by the user or by default).

1. Click-and-hold on a data item to move it to a different location.
2. Change the numeric values for TOP and LEFT.


- Legends such as GROSS cannot be disabled, and are always included.

3. Select INHIBIT to set the status of the CTS (Clear To Send) and RTS (Ready To Send) hardware handshake (BUSY) lines.

- An example of this is Paper out.

4. Complete all the items can be disabled from view and printing by right clicking the VISIBLE box, and then selecting NO or YES.

| Field | Time |  |  |
| :--- | :--- | :--- | :---: |
| Visible | YE | NO |  |
| Top | 6 | YES |  |
| Left | 10 |  |  |

5. Additional selections are available for both COUNT 1 and COUNT 2.

## Count1

### 6.14. Printed Examples

ACCUMULATION.

| Count1 | Count2 | Peak Wt | GR Acc | NT Acc |
| :--- | :--- | :--- | :--- | :--- |
| CNT GR | CNT NT | NO | YES | YES |
| 20 | 22 | 24 | 24 | 26 |
| 8 | 8 | 8 | 8 | 8 |

2 Items GR
0 Items NT
7.315 lb GR Total 0.000 lb NT Total

PIECE COUNT \& TOTAL<br>Printing Time, Date, Gross, Tare, Net, Count 1, and Count 2.<br>PEAK WEIGHT<br>XXXXXX Ib Peak Weight MM-DD-YY XX:XXAM

| 09:52AM |
| :---: |
| $03-11-09$ |
| 7.395 lb GR |
| 1.000 lb TA |
| 6.395 lb NT |
| 457 Pieces |
| 457 Total Pieces |


| Count1 | Count2 |  |
| :--- | :--- | :--- |
| PIECE | CNT NT |  |
| 20 | 22 | $\mathbf{6 0 0}$ Pieces |
| $\mathbf{0}$ O Items NT |  |  |
| 8 | 8 |  |

PIECE COUNT \& TOTAL.

| Count1 | Count2 |  |
| :--- | :--- | :--- |
| CNT GR | PIECE |  |
| 20 | 22 | 600 Items GR |
| 0 Total Pieces |  |  |
| 8 | 8 |  |

## Section 7: Service and Maintenance

### 7.1. Troubleshooting the Instrument

| DISPLAY | SYMPTOM | RESOLUTION |
| :--- | :--- | :--- |
| ERROR | • Possible bad battery or power loss <br> $\bullet$ • Program error | • Replace the PCB. <br> • Replace Battery |
| No Display | No Power | • Check AC Input <br> • Check battery voltage |
| Drifting/Unstable | • Display changes at a rapid pace. <br> • Loss of Excitation voltage. | • Check for damaged load cell, load <br> cell cables, or bad main PC. <br> - Measure the Excitation Voltage <br> (5VDC) |
|  |  | • Use a Simulator to troubleshoot. |

### 7.2. Battery Installation

## STAINLESS STEEL INSTRUMENT

6. Unscrew the black plastic end caps.
7. Insert five (5) alkaline "D" cell batteries.

## ABS INSTRUMENT

STAINLESS STEEL ENCLOSURE


ABS ENCLOSURE

8. Unscrew the two large knurled screws on the back of the Instrument
9. Remove the battery cover.
10. Insert five (5) alkaline "D" cell batteries.

- Industrial ‘D’ size Energizer EN95 battery or equivalent is recommended for maximum operating time.
- Stainless Steel models should have special formed key washers installed for grounding.
- Four (4) screws fasten the back cover plate at the corners.


## Appendix I: Data Output Formats

## A. General Notes

| <CR $>$ | $=$ means carriage return character |
| :--- | :--- |
| <LF> | $=$ line feed character |
| <SP> | $=$ space character |
| $<$ EOT $>$ | $=$ end of transmission character |
| $<\ldots>$ | $=$ used to indicate individual characters for clarity only (not present in |
|  | data stream) |

## B. Fairbanks/ Toledo Continuous Output

## <STX><A><B><C><WWWWWW><TTTTTT><CR>

A = Status Word A
B = Status Word B
C = Status Word C
W = Displayed Weight
T = Tare Weight

- Leading zeros are not suppressed.
- The Continuous Computer Output is an uninitiated, unrequested output that is transmitted at a fixed time interval.
$\stackrel{C}{C H}$


## B. Fairbanks/ Toledo Continuous Output, Continued

| Character String | Description |
| :--- | :--- |
| STX | Start of Text character : (02 Hex) |
| A | Status Word A |
| B | Status Word B |
| C | Status Word C |
| xxxxxx | Displayed Weight : x = Weight |
|  | $(6$ characters if grad size does not have a decimal point.) |
|  | (5 characters if the grad size does have a decimal point. |
|  | The decimal point is not sent as part of the character string. |
|  | Tare Value : x = Tare |
|  | $(6$ characters if the grad size does not have a decimal point.) |
|  | (5 characters if the grad size does have a decimal point. |
|  | The decimal point is not sent as part of the character string |
| CR | Carriage Return Character : (0D hex) |
| CS | CheckSum Character : If enabled, this character consists of the last |
|  | eight bits of the binary |
|  | sum of all characters transmitted up to this checksum character. |

## Status Word A

| Bit \# Decimal Point or Zero Location |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | x00 | x0 | x | x.x | x.xx | x.xxx | x.xxxx | x.xxxxx |
| 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| Increment Size |  |  |  |  |  |  |  |  |
| Count by 1 |  |  |  | Count by 2 |  |  | Count by 5 |  |
| 3 | 1 |  |  | 0 |  |  | 1 |  |
| 4 | 0 |  |  | 1 |  |  | 1 |  |
| 5 |  |  |  | Always Logic 1 |  |  |  |  |
| 6 |  |  |  | Always Logic 0 |  |  |  |  |
| 7 |  |  |  | Parity Bit |  |  |  |  |

## B. Fairbanks/ Toledo Continuous Output, Continued

## Status Word B

| Bit \# | Description |  |
| :--- | :--- | :--- |
| 0 | Gross $=0$ | Net $=1$ |
| 1 | Positive $=0$ | Negative $=1$ |
| 2 | In Range $=0$ | Overcapacity $=1$ |
| 3 | No Motion $=0$ | Motion $=1$ |
| 4 | lb $=0$ | $\mathrm{~kg}=1$ |
| 5 | Always Logic 1 |  |
| 6 | Normal $=0$ | Power Up $=1$ |
| 7 | Parity Bit |  |

## Status Word C

| Bit \# | Description |  |
| :--- | :--- | :--- |
| 0 | Always Logic 0 |  |
| 1 | Always Logic 0 |  |
| 2 | Always Logic 0 | Print Switch Pushed $=1$ |
| 3 | Normal $=0$ |  |
| 4 | Always Logic 0 |  |
| 5 | Always Logic 1 | Keyboard Tare $=1$ |
| 6 | Normal $=0$ |  |
| 7 | Parity Bit |  |

## C. Cardinal 738 Continuous Scorehoard Output

$<\mathrm{CR}><\mathrm{P}><\mathrm{WWWWWW}><\mathrm{m}><\mathrm{SP}><\mathrm{U}><\mathrm{SP}><\mathrm{g}><\mathrm{SPSP}><\mathrm{ETX}>$

W = Displayed weight
P = Polarity $\quad+=$ Positive weight

- = Negative weight
$\mathrm{U}=$ Units
$\mathrm{lb}=$ pounds
$\mathrm{kg}=$ kilograms
$\mathrm{m}=$ Motion or $\mathrm{o}=$ Overload
g = Gross; $\mathrm{n}=$ Net
SP = Space

Leading zeros are not suppressed

## D. Weightronics WI-120 Continuous Output

<G><P><WWWWWW><SP><U><CR><LF>
$\mathrm{G}=$ Gross; $\mathrm{N}=$ Net
$\mathrm{P}=$ Polarity $\quad+=$ positive weight

- = negative weight
$\mathrm{U}=$ Units

$$
\begin{aligned}
& \mathrm{lb}=\text { pounds } \\
& \mathrm{kg}=\text { kilograms }
\end{aligned}
$$

SP = Space

Leading zeros are not suppressed

## E. Condec Continuous Output

$<S T X><P><W W W W W W><U><G><M><C R>$

| $P=$ Polarity $\quad$ | space $=$ positive weight |
| :---: | :---: |
| - | $=$ negative weight |

W = Displayed weight
$\mathrm{U}=$ Units
$\mathrm{L}=$ pounds
$\mathrm{K}=$ kilograms
$\mathrm{G}=$ Gross; $\mathrm{N}=$ Net
$\mathrm{M}=$ Motion

Leading zeros are suppressed

## F. Demand Output

Activated by the receipt of a<CR>.

Gross Weight - No Motion - decimal points included
<SP> <W> <W> <W> <W> <W> <W> <SP> <l> <b> <SP> <SP> <G> <R> <SP> <SP> <CR> <LF> <EOT>

Gross Weight - Motion - decimal points included
<SP> <W> <W> <W> <W> <W> <W> <SP> <l> <b> <SP> <SP> <g> <r> <SP> <SP> <CR> <LF> <EOT>

Net Weight - No Motion - decimal points included
<SP> <W> <W> <W> <W> <W> <W> <SP> <l> <b> <SP> <SP> <N> $<\mathrm{T}><\mathrm{SP}><\mathrm{SP}><\mathrm{CR}><\mathrm{LF}><\mathrm{EOT}>$

## G. Continuous Output

- Outputs once every display update rate cycle.
- Continuous Output formatted output. Same for Poll and Auto
- Gross Weight - No Motion - decimal points included.
<SP> <W> <W> <W> <W> <W> <W> <SP> <l> <b> <SP> <SP> <G> <R> <SP> <SP> <CR> <LF> <EOT>

Gross Weight - Motion - decimal points included
 <r> <SP> <SP> <CR> <LF> <EOT>

Net Weight - No Motion - decimal points included
<SP> <W> <W> <W> <W> <W> <W> <SP> <l> <b> <SP> <SP> <N> <T> <SP> <SP> <CR> <LF> <EOT>

Net Weight - Motion - decimal points included
<SP> <W> <W> <W> <W> <W> <W> <SP> <l> <b> <SP> <SP> <n> <t> <SP> <SP> <CR> <LF> <EOT>

## H. PLC

- Continuous Output, transmitting data on every other A/D update.
- Approximately 32 transmissions per second.

| Baud Rate | 19,200 |
| :--- | :--- |
| Data Bits | $\mathbf{8}$ |
| Parity | None |
| Stop Bit | 1 |
| Mode | Continuous |

The output string is $\mathbf{1 2}$ characters, seen as "WWWWWWWUumm<eot>" where, <WWWWWWW> = Weight including decimal point and negative sign. Negative sign precedes most significant digit and may be preceded by space characters.
<uu> = units "lb", "kg", "oz", or "g ". "oz" may indicate ounces, or lb/ounces. <mm> = mode "GR" or "NT" for stable weight, or "gr" or "nt" for motion. <eot> = end of text.

Example 1: Gross - Ibs. - Weight Stable <WWWWWWW> <l><b> <G> <R> <EOT>

## Example 2: Gross - lbs. - Weight in Motion

<WWWWWWW> <l> <b> <g> <r><EOT>

## Example 3: Net - kgs. - Weight Stable

<WWWWWWW> <k> <g> <N> <T> <EOT>

## Example 4: Net - kgs. - Weight in Motion

<WWWWWWW> <k> <g> <n> <t> <EOT>

NOTE: Once PLC option is selected and protocol has been programmed, the installing technician's setup is complete.

Specialized tools available from www.anybus.com.
Interface of the HMS COMMUNICATIONS device, power supply to same device, and programming of the PLC is strictly the responsibility of the customer.

## I. UPS

- Serial Data Output Format for UPS Worldship Software.

The instrument will transmit the following string of data.
Character Number $12 \begin{array}{llllllllllll}1 & 4 & 5 & 7 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 17\end{array}$

## String 1

Gross Weight: X X X X . X X SP l/k b/g SP G/g R/r SP SP CR LF EOT

## NOTES:

- Characters denoted by "X" are characters 0-9.
- Leading zeroes are replaced with spaces (SP).
- Character 5 is a decimal point (HEX 2E).
- Lower case " $I$ " and "b" for Avoirdupois Units, or "k" and "g" for Metrics Units.
- The first weight character will be a minus ( - ), HEX 2D, If weight is negative.
- Characters separated with a "/" denoted one of the characters will be transmitted.
- Lower case gr in characters 12 and13 indicates scale motion.
- Upper case indicates stable weight.
- EOT, HEX 04 is transmitted in "HiCAP" condition.
- Transmission will occur when a CR (Hex OD) carriage return is received.


## J. PShip

- Serial Data Output Format for P Ship, used to interface to FedEx Shipping Programs.
- All computer commands and scale responses are ASCII Character Strings, where:
<CR> is an ASCII carriage return (hexadecimal OD)
<LF> is an ASCII line feed (hexadecimal OA)
<ETX> is an ASCII End-Of-Text (hexadecimal 03)
(STATUS) is a two ASCII number representation of the scale status (in the form of hexadecimal $3 x 3 x$, where the bit pattern of the low nibbles, indicated by an "x", determine the actual status conditions)

| COMPUTER <br> RESPONSE | SCALE RESPONSE | COMMAND <br> RESULT |
| :--- | :--- | :--- |
| W<CR> | <LF><SP>XXX.XXUU<CR>(STATUS)<ETX>> $>$ | Returns the weight <br> and scale status in two <br> ASCII digits. |
| S<CR> | <LF>S(STATUS)<CR><ETX> | Returns the scale <br> Status in two ASCII <br> digits (defined in the <br> following section) |
| Z<CR> | No response | Zeros the scale |
| All Else | <LF>?<CR> | Unrecognizable <br> command |

Notes: In the scale response to "W<CR>":

1. $\mathbf{X X X} . \mathbf{X X}=\quad$ A five digit number with two digits to the right of the decimal point which is the displayed scale weight.
2. $\mathrm{SP}=\quad$ An ASCII space (hexadecimal 20). In the event of a negative weight, an ASCII, "-" (hexadecimal 2D) is returned in this location.

## J. P Shilp, Continued

3. $\mathbf{U U}=$

A two character weight identifier. If the scale is configured to weigh kilograms, a "KG" (uppercase letters) will be returned, if configured for pounds, "LB" (uppercase letters) will be returned.
4. The decimal point is returned by the scale as part of the ASCII string.
5. Interpretation of scale status digits

The high order nibble of each status byte has a value of 3 (0011 B). The low order nibble of the first and second bytes are defined as follows:

$$
\text { 1st Byte: } \quad \begin{aligned}
\text { Bit } 0-\text { High } & =\text { scale is in motion } \\
\text { Low } & =\text { scale is stable } \\
\text { Bit } 1-\text { High } & =\text { scale at zero } \\
\text { Low } & =\text { scale not at zero } \\
\text { Bit } 2-\text { Low } & =\text { not used } \\
\text { Bit } 3-\text { Low } & =\text { not used }
\end{aligned}
$$

2nd Byte: $\quad \begin{aligned} \text { Bit } 0-\text { High } & =\text { scale is below zero } \\ \text { Low } & =\text { scale is not below zero }\end{aligned}$
Bit 1 - High = scale is over capacity Low = scale is not over capacity
Bit 2 - High = scale ROM program failure Low = scale ROM okay
Bit 3 - High = faulty calibration data* Low = scale calibration okay
*This is the result of an incorrect checksum
An example of the scale response to an "S" command would be:
<LF>S20<CR><ETX>
The following status conditions are in effect for this response:

```
-scale at zero
-scale is not below zero
-scale is not over capacity
-scale ROM okay
-scale calibration okay
```


## Appendix II: Remote PC Commands

Transmitting certain ASCII characters to the FB2255 will duplicate a key-press from a remote location via the RS 232 serial connection to Port 1. The baud rate, parity, and stop bits must match. The data bit length is 8 bits.

| ASCII CHARACTER | FUNCTION PERFORMED / COMMENTS |
| :--- | :--- |
| Z (upper case) | Zero. Active in the Polled or Button Modes |
| A (upper case) | Tare (Auto Tare). Active in the Polled or Button Modes |
| $\mathbf{U}$ (upper case) | Change Units. Active in the Polled or Button Modes |
| $\mathbf{g}$ (lower case) | Toggle Gross / Net. Active in the Polled or Button Modes |
| $\mathbf{P}$ or $\mathbf{p}$ (either case) | 'P' or 'p". Active in the Polled or Button Modes The output <br> will be the same as if the instrument front panel switch is <br> operated. This output is formatted via the PC2255 <br> program, using the 'Format Ticket' tab and can include <br> any of the field items and in the order prescribed. |
| $\mathbf{C R}$ (upper case) | Carriage Return. Active in the Polled Mode Output will be <br> the displayed weight, either Net or Gross. If Motion then |
| "GR" and "NT" are transmitted as "gr" and "nt". Both |  |

## EXAMPLE

" 12345 lb GR<CR><LF><EOT>" or "12345 lb nt<CR><LF><EOT>".

C (lower case) Active in the Polled or Continuous Modes If the instrument is in the Polled Mode the output will be the same as if a Carriage Return was received. The output will be transmitted when the display is refreshed. If the instrument is in the Continuous Mode the output will be transmitted immediately regardless of display update timing.

NOTE: The programmed parameters in the FB2255 apply equally to both a key press and a remote PC command.

For example, in order to change the Units option for more than one unit, it must be Enabled.

| RS232 INTERFACE WIRING |  |  |  | $\begin{gathered} \text { FB2255 (ABS) } \\ \text { REMOTE DISPLAY } \end{gathered}$ |  |  | $\begin{gathered} \text { FB2255 (ABS) } \\ \text { REMOTE DISPLAY } \end{gathered}$ |  |  | $\begin{gathered} \text { FB2255 (SS) } \\ \text { REMOTE DISPLAY } \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MODEL | COM | CONNECT |  |
| $\begin{aligned} & \text { FB2200 } \\ & \text { (ABS) } \end{aligned}$ | 1 | 3 | TX | 1 | TB4(A)-1 | RX | 2 | 2 | RX | 1 or 2 | TB4(A or B)-1 | RX |
|  | 1 | 5 | GND | 1 | TB4(A)-4 | GND | 2 | 5 | GND | 1 or 2 | TB4(A or B)-4 | GND |
| $\begin{aligned} & \text { FB2200 } \\ & \text { (SS) } \end{aligned}$ | 1 | 3 | TX | 1 | TB4(A)-1 | RX | 2 | 2 | RX | 1 or 2 | TB4(A or B)-1 | RX |
|  | 1 | 5 | GND | 1 | TB4(A)-4 | GND | 2 | 5 | GND | 1 or 2 | TB4(A or B)-4 | GND |
| $\begin{aligned} & \text { FB2255 } \\ & \text { (ABS) or } \\ & \text { FB2250 } \\ & \text { (ABS) } \end{aligned}$ | 1 | TB4(A)-2 | TX | 1 | TB4(A)-1 | RX | 2 | 2 | RX | 1 or 2 | TB4(A or B)-1 | RX |
|  | 1 | TB4(A)-1 | RX | 1 | TB4(A)-2 | TX | 2 | 3 | TX | 1 or 2 | TB4(A or B)-2 | TX |
|  | 1 | TB4(A)-4 | GND | 1 | TB4(A)-4 | GND | 2 | 5 | GND | 1 or 2 | TB4(A or B)-4 | GND |
|  | 2 | 3 | TX | 1 | TB4(A)-1 | RX | 2 | 2 | RX | 1 or 2 | TB4(A or B)-1 | RX |
|  | 2 | 2 | RX | 1 | TB4(A)-2 | TX | 2 | 3 | TX | 1 or 2 | TB4(A or B)-2 | TX |
|  | 2 | 5 | GND | 1 | TB4(A)-4 | GND | 2 | 5 | GND | 1 or 2 | TB4(A or B)-4 | GND |
| $\begin{aligned} & \text { FB2255 } \\ & \text { (SS) or } \\ & \text { FB2250 } \\ & \text { (SS) } \end{aligned}$ | 1 or 2 | TB4(A or B)-2 | TX | 1 | TB4(A)-1 | RX | 2 | 2 | RX | 1 or 2 | TB4(A or B)-1 | RX |
|  | 1 or 2 | TB4(A or B)-1 | RX | 1 | TB4(A)-2 | TX | 2 | 3 | TX | 1 or 2 | TB4(A or B)-2 | TX |
|  | 1 or 2 | TB4(A or B)-4 | GND | 1 | TB4(A)-4 | GND | 2 | 5 | GND | 1 or 2 | TB4(A or B)-4 | GND |
| 2300 | 1 | TB4-1 | TX | 1 | TB4(A)-1 | RX | 2 | 2 | RX | 1 or 2 | TB4(B)-1 | RX |
|  | 1 | TB4-2 | GND | 1 | TB4(A)-4 | GND | 2 | 5 | GND | 1 or 2 | TB4(B)-4 | GND |
| 2500 | $\begin{gathered} 2,3,4 \\ \text { or } 5 \end{gathered}$ | 3 | TX | 1 | TB4(A)-1 | RX | 2 | 2 | RX | 1 or 2 | TB4(A or B)-1 | RX |
|  |  | 5 | GND | 1 | TB4(A)-4 | GND | 2 | 5 | GND | 1 or 2 | TB4(A or B)-4 | GND |
| $\begin{aligned} & \hline 2500 \\ & \text { (SS) } \end{aligned}$ | $\begin{gathered} 2,3,4 \\ \text { or } 5 \end{gathered}$ | 4 | TX | 1 | TB4(A)-1 | RX | 2 | 2 | RX | 1 or 2 | TB4(A or B)-1 | RX |
|  |  | 8 | GND | 1 | TB4(A)-4 | GND | 2 | 5 | GND | 1 or 2 | TB4(A or B)-4 | GND |
| 2800 | A | TB3-2 | TX | 1 | TB4(A)-1 | RX | 2 | 2 | RX | 1 or 2 | TB4(A or B)-1 | RX |
|  |  | TB3-4 | GND | 1 | TB4(A)-4 | GND | 2 | 5 | GND | 1 or 2 | TB4(A or B)-4 | GND |
|  | B | TB2-2 | TX | 1 | TB4(A)-1 | RX | 2 | 2 | RX | 1 or 2 | TB4(A or B)-1 | RX |
|  |  | TB2-4 | GND | 1 | TB4(A)-4 | GND | 2 | 5 | GND | 1 or 2 | TB4(A or B)-4 | GND |
| 5200A | 1 or 2 | 4 | TX | 1 | TB4(A)-1 | RX | 2 | 2 | RX | 1 or 2 | TB4(A or B)-1 | RX |
|  |  | 5 | RX | 1 | TB4(A)-2 | TX | 2 | 3 | TX | 1 or 2 | TB4(A or B)-2 | TX |
|  |  | 8 | GND | 1 | TB4(A)-4 | GND | 2 | 5 | GND | 1 or 2 | TB4(A or B)-4 | GND |

## Appendix VI: FB2255 Remote Display Active Keys

| MODEL | ZERO | UNIT | GROSS/NET | AUTO TARE | PRINT |
| :--- | :---: | :---: | :---: | :---: | :---: |
| FB2200 | $* * *$ | $* * *$ | ${ }^{* * *}$ | ${ }^{* * *}$ | $* * *$ |
| FB2250 | Y | Y | Y | Y | Y |
| FB2255 | Y | Y | Y | Y | Y |
| 2300 | $* * *$ | $* * *$ | ${ }^{* * *}$ | ${ }^{* * *}$ | ${ }^{* * *}$ |
| 2500 | $* * *$ | $* * *$ | $* * *$ | ${ }^{* * *}$ | ${ }^{* * *}$ |
| 2800 | $* * *$ | $* * *$ | $* * *$ | ${ }^{* * *}$ | ${ }^{* * *}$ |
| 5200 A | $* * *$ | Y | Y | ${ }^{* * *}$ | ${ }^{* * *}$ |

Manufactured by Fairbanks Scale, Inc.
821 Locust Street
Kansas City, MO 64106
www.fairbanks.com

